3d принтер: что это такое, как работает, виды и типы, чем печатает

3D-принтеры: зачем они нужны и как они работают

Поскольку обычные 2D-принтеры уже утратили потенциал к развитию — развито уже всё, что только можно и нельзя — пора обращать взоры к печати в трёхмерном пространстве. Признайтесь, ведь вы не раз мечтали, чтобы можно было не покупать себе вещи, а просто напечатать их. И сегодня это уже можно, правда, с массой оговорок.

3D-принтеры сегодня в моде. Выпущено уже несколько сотен моделей, только это ни о чем не говорит: все они работают в основном по одному и тому же принципу, и даже «фирменное ПО» используют одинаковое, отличающееся подчас только цветом кнопочек. Подчеркиваем, что мы говорим о моделях дня сегодняшнего: такие принтеры быстро эволюционируют, и уже завтра (или через месяц) может выйти на рынок что-нибудь революционное и сногсшибательное.

Итак, что же такое 3D-принтер для домашнего использования? Это устройство, использующее метод послойного изготовления физического объекта из виртуальной 3D-модели. Первые принтеры такого типа появились еще лет 30 назад, и на сегодняшний день представлены десятком разных типов. Перечислять мы их не будем, а пристальное внимание обратим на один, самый доступный обычному пользователю тип сегодня: FDM 3D-принтер. FDM расшифровывается как «моделирование методом наплавления» (Fused Deposition Modeling).

Принцип действия FDM-принтера прост: раздаточной головкой на поверхность охлаждаемой платформы-основы выдавливаются капли находящегося в разогретом состоянии термопластика. Быстро застывая и слипаясь между собой, капли формируют слои создаваемого объекта. Так и получается в итоге объемный предмет, с которым потом что-нибудь можно сделать.

Зачем?

Первое, что нужно для себя понять — а зачем, собственно, нужен 3D-принтер? Что мы хотим — просто развлекаться и создавать модели и макеты? Использовать принтер для ведения бизнеса? Воплощать творческие фантазии? Бизнес, конечно, оценил 3D-печать давно: такие мировые промышленные гиганты, как Airbus, Boeing, General Electric, Ford, Siemens, NASA используют их постоянно; и это не говоря уже об инженерах, ученых, медиках и огромном количестве мелких предпринимателей.

Дома 3D-принтер открывает широчайшие возможности использования и применения своей фантазии, и поскольку самые дешевые модели стоят от 20 тыс. рублей и выше, они доступны практически каждому человеку с компьютером.

Применений на самом деле можно найти массу. Кто-то задумает сделать себе стол с макетами, воссоздающие какую-нибудь область реально существующую или фантастическую (скажем, поверхность планеты из «Звездных войн»). Кто-то напечатает себе солдатиков и вспоминает детство. А кто-то печатает паззлы детям, придумывая все новые и новые варианты. К тому же можно создать работоспособный макет чего-то более сложного.

А один индивидуум вообще напечатал себе пластиковый и полностью работоспособный пистолет, который не виден на металлодетекторах. В связи с этим законники некоторых стран уже начинают беспокоиться на тему срочного внесения поправок в соответствующие законы, дабы не превратить новую технологию в оружие массового уничтожения (хотя Форд тоже не отвечал за то, что кто-то совершал ограбления, пользуясь его машинами).

В общем, резюмируя, можно выделить несколько основных преимуществ 3D-принтеров: домашнее творчество, использование более сотни различных типов материалов (не только огромное количество самых разнообразных пластиков и полимерных смол, но и металлы, бумага, керамика, ткань, пищевые продукты, соль, лунный и марсианский грунт и даже живые клетки!), универсальность и снижение трудоёмкости (один принтер может заменить несколько сложных агрегатов), простота в использовании (об этом мы поговорим далее), экономичность, быстрота создание объектов и гибкость технологии.

Кстати, в сферу применения можно включить и медицину: инновационная биомедицинская печать сможет предложить в ближайшем будущем искусственные органы и ткани тела, а сегодня уже можно печатать протезы и хирургические имплантаты.

Предположим, вы купили себе 3D-принтер, он стоит и занимает места примерно столько, сколько обычный принтер (или, скорее, МФУ), и далее нужно создать в специальной программе объект для печати. А программ таких множество: Google SketchUp, 3DCrafter, 3Dtim, BRL-CAD, FreeCAD и другие (тысячи их). Желательно, конечно, хоть что-нибудь понимать в CAD-моделировании, но и без этого программы достаточно просты для применения даже новичками.

После смоделированной 3D-версии наступает время её обработки специальной программой (называемой также «слайсером» или «генератор G-кода»). Исходный объект делится на множество тонких горизонтальных слоев и преобразуется в некий цифровой код, понятный 3D-принтеру. Другими словами, генератор создает набор команд, которые указывают 3D-принтеру, как и куда нужно наносить материал при 3D-печати данного объекта. Для пользователя данный этап работы не скажет ничего, потому что фактически принимать участие в нем он в нем не сказать чтобы будет.

А потом наступает волнительный момент печати (кстати, в Windows 8 есть даже поддержка драйвера 3D-печати для принтера MakerBot). Начинается построение объекта из тонких горизонтальных слоев материала.

Сам по себе процесс довольно прост. В самом начале рабочая платформа находится в верхнем положении, а печатающая головка накладывает на неё нижний слой объекта. После того, как сформирован первый слой, рабочая платформа опускается на толщину слоя, и печатающая головка накладывает новый слой материала на предыдущий. Данный цикл повторяется до последнего слоя, то есть до момента завершения создания объекта.

Висящий в воздухе подбородок Ленина был напечатан на недорогом 3D-принтере с подпоркой,

которая в дальнейшем будет отломана, а подбородок – подрихтован.

Если же есть необходимость напечатать висящий в воздухе объект (например, гарцующую лошадь), то сегодня для таковых используется разнообразные подпорки, которые после завершения процесса отламываются или отрезаются, а место стыка шлифуется вручную. В дорогих (то есть хороших) принтерах для подпорок используется водорастворимый материал: после печати модели опускается в воду, где лишние подпорки растворяются.

Читайте также:  Как отсканированный документ перевести в формат Word: можно ли, чтобы редактировать

Параметры печати

О скорости пока речь и не идёт. Понятно, что создание одного объекта займет далеко не один час работы принтера, поэтому выбор 3D-принтера сегодня состоит в выборе между параметрами и решении, насколько тот или иной параметр важен.

И самый главный из них — разрешение печати. Здесь под этим понятием подразумевается минимально допустимая высота слоя материала, с помощью которого может печатать данный 3D-принтер. Разрешение печати принято обозначать в микрометрах (мкм, микрон, тысячной доле миллиметра). Понятно, что чем тоньше слои, тем меньше заметен переход между ними: в итоге поверхность объекта более гладкая, а детали — более выразительные. Обратная сторона высокого разрешения — увеличенное время печати, большая нагрузка на печатающие механизмы и быстрый износ. Разрешение печати зависит от технологии работы принтера, точности печатных механизмов, выбранного материала и настроек приложения.

На сегодняшний день самый точный 3D принтер может печатать с высотой слоя в 50 мкм.

Вторая важная характеристика — рабочий объём (он же — «область печати» или «зона печати»). От него зависит размер напечатанного объекта. Фактически он обозначает зону досягаемости (охвата) печатающей головки принтера в трех плоскостях.

Третий пункт — какими типами пластиковых нитей может печатать принтер. Самыми распространенными на сегодняшний день являются ABS (акрилонитрилбутадиенстирол) и PLA (полилактид). Некоторые принтеры могут печатать обоими типами, некоторые — только одним из них. Но кроме этих двух типов есть и другие (ещё парочка самых распространенных — HIPS — ударопрочный полистирол и PVA — поливинилацетат), и все они обладают рядом физико-химических характеристик: растворимость в воде, гибкость, структура и запах, прочность и даже свечение в темноте. Возможность печати тем или иным пластиком обуславливается наличием/отсутствием подогрева платформы (который в идеале должен присутствовать), рабочим диапазоном температур экструдера (нагревательный элемент, который плавит пластик) и конструкцией камеры для печати. В идеале лучше всего выбирать принтер с максимальным количеством поддерживаемых нитей, чтоб не ограничивать себя — как сейчас, так и в будущем.

А последний пункт, как ни странно, — страна-производитель. Сейчас на российском рынке можно найти модели из США и Европы, китайские и российские. Американские и европейские модели зачастую завозят в Россию небольшими партиями, а сами компании-производители не имеют официальных представителей в России. Качество китайских моделей на порядки отстаёт от всех прочих, понятное дело, и тут выигрыш идёт больше уже в цене.

Производители

Помимо китайских и кустарных принтеров (да, его реально собрать дома самостоятельно), есть несколько моделей, которые популярны больше остальных, и поэтому их поддержка программным обеспечением максимально широка, если можно так говорить о столь новой области. На сегодняшний день это модели MakerBot Replicator 2, PrintBox3D One, Picaso Designer, UP Plus 2, Cube и CubeX. Отличия у каждого из них сводятся к перечисленным в предыдущем параграфе пунктам, размерам камеры и различным дополнительным опциям наподобие Wi-Fi-модуля. Помимо этих моделей, есть, конечно, и другие, но опять-таки нельзя сказать, что они сильно отличаются с технической точки зрения: всё-таки это больше страна-производитель, размеры, скорость печати и количество поддерживаемых типов пластика.

Вот такие они, поворотные принтеры

Напоследок нужно сказать про поворотные 3D-принтеры. Они пока что совсем никакой популярностью не пользуются, но у них есть всё-таки ряд существенных преимуществ по сравнению с «традиционными» 3D-принтерами — если последние можно так назвать. Главное из них — 3D-принтер с поворотной платформой обеспечивает больший рабочий объем по сравнению с устройствами, работающими в декартовой системе координат. Такой принтер использует полярную систему координат (радиус и угол), чтобы рассчитать движение печатной головки: система автоматически конвертирует модели, созданные в декартовой системе координат, в полярные координаты. Поэтому с подобным 3D-принтером можно использовать стандартное ПО, использующееся в «традиционных» 3D-принтерах без поворотной платформы. Физически это выглядит вполне очевидно: платформа вращается, а его экструдер движется по радиусу платформы от её центра к краю. Такая конструкция в два раза сокращает путь экструдера и снижает необходимость его поддержки.

Недостатки 3D-принтеров

Минусы есть у всего, и 3D-принтеры — не исключение. Поэтому на сегодняшний день у технологии существует определенное количество недостатков.

И первый из них — это, наверное, размеры печати. Вы видите на фотографиях «шкафчики» этих принтеров — и вот именно ими всё и ограничивается. Принтер может напечатать только то, что поместится на платформе. А что-то больше этого — разве что по частям, а затем части придется тем или иным образом склеить. И даже несмотря на то, что уже сейчас существует прототип 3D-принтера, размеры рабочей платформы которого практически не ограничены ничем, о массовом внедрении такой технологии говорить пока рано.

Второй недостаток касается самой технологии. Послойная структура сама по себе означает, что между этими слоями всегда будет некий рубеж, переход: поверхность останется матовой и шероховатой. Конечно, последующая обработка может «сгладить углы» во всех смыслах, но эта «доработка напильником» явно не говорит в пользу технологии. К тому же, слоистая структура означает меньшую плотность и, соответственно, меньшую прочность объекта, по сравнению с цельными деталями.

Третий недостаток — достаточно высокая цена 3D-принтеров на сегодняшний день. Они стоят от 20 тысяч рублей, а хорошая модель стоит в среднем 100 тысяч, и пока подешевение не ожидается.

Читайте также:  Плата форматера в принтере: что это, как работает

Так покупать или нет?

Формально покупка 3D-принтера для дома сегодня оправдана только в том случае, если вы можете определить для себя сферу его применения. Выбор моделей достаточно широк, энтузиасты могут собрать принтер даже у себя дома, но тем, кто не хочет сильно рисковать, можно порекомендовать выбрать или одну из самых популярных моделей, которые поддерживаются распространенным и доведённым до ума программным обеспечением (и при этом можно выбрать из десятков приложений). Если же покупка такого необычного агрегата у вас не стоит остро, можно попробовать подождать годик-другой, пока технология не разовьётся достаточно для того, чтобы унифицироваться по максимуму и избавиться от массы неудобных ограничений, которые свойственны ей сегодня.

В любом случае, будущее у технологии весьма радужное и применение она себе уже нашла: а в будущем сферы применения будут только шириться.

Детально о 3 д принтерах и их принципе действия

Печатающая техника бывает нескольких видов. Ранее мы уже публиковали статьи о струйных и лазерных аппаратах. В этом материале детально расскажем, что такое 3d принтер и как работает этот вид устройств.

Хоть популярности такие «девайсы» приобрели только в последнее десятилетие, но история их начинается еще с восьмидесятых годов прошлого столетия. И как показывает практика, нужны они в самых разных областях жизни человека. А потому по характеристикам делятся на разные виды и типы 3д устройств. А также применяются несколько технологий печати и порой кардинально разные.

Чтобы правильно пользоваться этим типом техники, рекомендуем ознакомиться с принципом ее работы и посмотреть на видео, как и чем печатает 3 д принтер. Также присмотритесь к используемым для печати материалам. Они должны быть качественными и подходить устройству по характеристикам, что указывается в инструкции к нему.

Что это

3d принтер — это высокотехнологичное устройство, станок с ЧПУ (числовым программным управлением), реализующий идею послойного наращивания (печатания) объектов. Исходный материал в размягченном состоянии поэтапно наносится сразу на платформу, основу, а затем на заготовку. Механика принтера управляется программным обеспечением. Устройства отличаются конструкцией, принципом нанесения слоев, материалами, характеристиками и ценой.

История появления

В XX веке востребованными стали методы производства деталей, комплектующих и целых изделий на станках с применением координатных столиков. В 50-е годы с появлением алфавитно-цифровых печатающих устройств в воздухе начали витать идеи о трехмерной печати. Лишь в 1980-х годах развивается метод производства, основанный не на резании (фрезеровании, сверлении, точении, вырезании) – удалении материала из заготовки (аналог изготовления скульптуры), а путем его послойного добавления (для примера – выращивание кристаллов). Детали соответствовали образцу, созданному в системе автоматического проектирования.

Материалами выступали полимерные, металлические, керамические порошки. Связывались они диффузионным, термическим (плавление) либо клеевым методом. За три десятилетия совершенствования вычислительной техники, программного обеспечения и роста потребности в 3D-печати последняя развилась до получения металлических и полимерных изделий, не нуждающихся или требующих минимальной постобработки.

Десятки специалистов из многих стран мира работали над воплощением фантастических устройств для трехмерной печати. Чак Халл – нынешний главный директор технологического отдела 3D Systems изобрел прибор, работающий по методу лазерной стереолитографии.

Прототип выращивается из жидкого фотополимера под воздействием лазерного излучения. Передвижная платформа упрощает фокусировку лазера в нужных местах. Фотополимер после облучения лазером слой за слоем затвердевает, составляя основу прототипа. Готовый объект погружают в химический раствор для удаления излишков и сглаживания неровностей.

Основные характеристики

При выборе принтера ориентируйтесь на три вещи: бюджет, сфера эксплуатации и технические характеристики. С первым определяйтесь самостоятельно, с остальным мы поможем.

Область печати Максимальные габариты прототипа по трем направлениям, которые распечатает принтер. Реже указывается в кубическим сантиметрах, что менее информативно для потенциального клиента. Обычно область на несколько процентов меньше указанных значений.
Расширение Под расширением понимают минимальную толщину слоя материала. Чем ниже, тем качественнее модель, ровнее поверхность, менее нуждается в минимальной постобработке. В дорогих принтерах толщина наносимого слоя выставляется оператором.
Экструдер Экструдер или печатающая головка подготавливает (плавит) и наносит жидкий материал на подложку (модель). Состоит из сопла, откуда подается расплавленный пластик, транспортер для подачи полимерной нити, термодатчик для контроля за температурой и охлаждающий механизм. Модели с двумя-тремя экструдерами печатают цветные прототипы. Промышленные принтеры выпускаются и с двойным соплом.
Способы подключения Трехмерные принтеры коннектятся к компьютерам и ноутбукам через классический USB или по беспроводной линии связи Wi-Fi.
Встроенное программное обеспечение Микропрограмма – интерпретирует команды операционной системы и реализует их – «сообщает» принтеру, что нужно делать, чтобы напечатать трехмерную модель.

Для чего нужен

В одних сферах человеческой деятельности трехмерная печать упростила и ускорила работу, в других – открыла новые возможности. Основные сферы применения:

  • В быту или образовании используется в качестве средства для проведения экспериментов, создания механизмов.
  • В инженерии и разработке — для создания прототипов или экспериментальных образцов.
  • В производстве — для печати полимерных деталей со сложной геометрической формой, создания форм для литья легкоплавких материалов.
  • В строительстве — габаритные принтеры за считаные часы печатают здания из компаунда на основе бетона, широко применяются для возведения временных конструкций жилья.
  • Пищевая промышленность использует их для создания элементов украшения для тортов и кондитерских изделий.
  • В архитектуре — для печати макетов зданий, сооружений и целых микрорайонов.
  • Мелкосерийное производство деталей, статуэток, сувенирной продукции.
  • 3д в медицине – это точные копии органов и частей тела для экспериментирования, обучения, протезирования.
Читайте также:  Катридж или картридж: как пишется правильно слово

Плюсы и минусы

Трехмерная печать обладает преимуществами и недостатками.

  • Воспроизведение деталей сложной геометрии с точным повторением цифровой модели.
  • Печать деталей практически неограниченных габаритов на принтерах с соответствующим объемом рабочей камеры.
  • Высокая точность – качество печати почти всегда опережает качество деталей, изготовленных методом литья с постобработкой (фрезеровкой).

  • Подготовка к работе. Для настройки печати нужны специальные знания и опыт.
  • Габариты. Размер камеры в несколько раз меньше размеров самого принтера.
  • Бюджетные принтеры оснащаются маленькими рабочими камерами, а большие модели делаются поэтапным наращиванием — «склеиванием» моделей из нескольких частей.
  • Цена расходных материалов (зависит от его типа).
  • Низкая скорость работы даже моделей для мелкосерийного производства.
  • Ограниченность в материалах.
  • Применение поддержек (кроме метода PVA) с постобработкой.
  • Невысокая прочность модели.

Виды и типы

Виды по технологии печати

Существует десяток технологий трехмерной печати:

По типу применяемых расходников

В качестве расходников применяется несколько материалов.

Порошки Печатающая головка наносит на подложку слой клея в нужных местах, валик – слой порошка (металлической пудры), спекаемого с веществом.
Гипс Предыдущий вариант, где вместо металлического порошка применяют гипс, шпаклевка, цемент обязательно со связующим компаундом.
Полимеры Жидкие фотополимеры затвердевают под воздействием электромагнитных излучений (метод SLA). Расплавленные пластиковые нити (PLA, PVA, ABS) послойно наносятся на подложку и шустро затвердевают.
Воск Доступный легко плавящийся материал для получения высококачественных деталей, прост в работе.

По конструкции

Различают несколько конструкций 3D-принтеров.

    RepRap. Самовоспроизводящийся аппарат, способен печатать детали, необходимые для производства собственных копий. С минимальными затратами создают 3D-принтеры для массовой эксплуатации. Поставляются как набор металлических комплектующих без пластиковых элементов (их можно напечатать), а порой, и электроники. Требуют много времени для сборки, дешевые.

Как работает и печатает

Принцип действия

Создание модели

После сборки и настройки (калибровки) необходимо создать печатаемую трехмерную модель в 3D-редакторе.

  • 3D-моделирование. В программе для трехмерного моделирования создается модель. Крупные прототипы, которые не поместятся в камеру принтера, делятся на несколько помельче. Трехмерная модель отправляется в программу-слайсер для формирования G-кода.
  • G код. Слайсер – приложение для автоматической подготовки цифровой модели в формате STL к печати на 3D-принтере – генерирования G-кода. Слайсер нарезает модель на слои и описывает движения печатающей головки и ее действия, необходимые для формирования прототипа. На основе G-кода печатающая каретка передвигается по заданной траектории, а сопло наносит материал в указанные моменты.

После запуска печати устройство выполняет команды из G-кода.

Чем печатает: расходные материалы

Основные расходные материалы для трехмерных моделей – пластик и фотополимер.

Как пользоваться и печатать

Самые трудные моменты в эксплуатации собранного 3D-принтера – его калибровка и создание цифровой копии модели.

Предварительные настройки (список)

До начала работы пользователь должен выполнить ряд подготовительных мероприятий:

  1. Подготовить место, где будет производиться печать.
  2. Заправить устройство расходными материалами.
  3. Подключить принтер к персональному компьютеру или ноутбуку.
  4. Проверить проходимость экструдера.
  5. Выполнить калибровку движения печатающей каретки.
  6. Загрузить модель в программу для печати.

Непосредственно в процессе:

  1. Следить за нагревом подложки и сопла.
  2. Постоянно вести наблюдение за температурным режимом.
  3. Управлять скоростью подачи расходника.
  4. Вовремя проводить замену бобин с пластиком на нить другого цвета или если она закончилась.

Это основной список с учетом, что 3д модель объекта уже готова.

Но также обратите внимание на такие «моменты»:

  • Калибровка. Прежде чем запустить печать, калибруется движение печатающего механизма относительно платформы во всех направлениях с учетом расходного материала.
  • Температура. Задается температура плавления пластика. Необходимо добиться того, чтобы слои пластика не накладывались друг на друга, но и пустого пространства между ними не было. Для этого разработан ряд утилит, применяются пробные модели.
  • Время создания объекта. Время печати детали зависит от ее габаритов, быстродействия принтера и его точности. Чем выше точность исполнения, тем дольше печатается модель: от нескольких минут до пары часов.

Трехмерная печать плотно вошла в человеческую деятельность. Приобрести принтер или собрать его как сложный конструктор для взрослых смогут многие, как и научиться создавать трехмерные модели. Кто знает, может в скором будущем люди научатся печатать отходами из мебельного производства для экономии экологического материала. Или смогут печатать камни с необычной геометрией для строительства изысканных сооружений по принципу полигональной кладки, которые обнаруживают по всему земному шару.

Устройство 3D-принтера, его разновидности и принцип работы. Создание 3D-модели и ее печать

    • Как работает 3D-принтер
    • Виды 3D-принтеров. Технологии печати
      • По области использования
      • По принципу работы (технологии печати)
    • Как устроен 3D-принтер
      • Конструкция FDM
      • Конструкция SLA
    • Процесс создания модели с нуля. Как печатать на 3D-принтере
      • Создание модели в электронном виде
      • Подготовка файла для печати
      • Подготовка принтера
      • Печать 3D-модели
      • Постобработка
      • Готово!
    • Заключение

Как вы уже наверняка поняли, речь пойдёт о 3D-принтере. Возможно, до этого момента и вы не особо понимали, каким образом функционирует это чудо-устройство. Ничего страшного, вы пришли по адресу – в этой статье мы разберёмся, как же работает этот самый принтер.

Типовой представитель бюджетных принтеров – Creality Ender 3 V2

Как работает 3D-принтер

На данный момент есть достаточное количество разнообразных 3D-принтеров, различающихся как по способам печати, так и по конструкциям самих принтеров. И если пути к созданию физической модели в каждом принтере кардинально разнятся, то сам принцип создания везде используется один: послойное создание 3D-модели под «руководством» специального файла, задающего образец печати для каждого слоя модели.

Принцип печати в общем виде

Виды 3D-принтеров. Технологии печати

Прежде чем перейти к рассмотрению устройства принтера и процесса печати ближе, разделим принтеры на категории. Это действие выполняем скорее для общего развития, поэтому если интересуют только сами принципы работы, можно смело переходить к пункту 3.

Итак, 3D-принтеры делятся:

По области использования

  • Домашние – самый бюджетный тип. Часто собираются самостоятельно, как конструктор. Хорошо подходят для изготовления отдельных небольших предметов поштучно. В среднем нуждаются в хорошей настройке, без чего вряд ли смогут дать качественный результат.

Типичный домашний принтер. Судя по всему, был собран владельцем собственноручно из различных компонентов.

  • Профессиональные – принтеры для высококлассной печати, на порядок дороже домашней. Зачастую используются на предприятиях для изготовления качественных моделей. Однако из-за более совершенных технологий в сравнении с домашними принтерами требуют меньшей квалификации мастера для настройки.

Один из возможных вариантов профессионального 3D-принтера – Raise3D Pro2 Plus. Уже намного больше похож на производственный станок, чем домашний принтер.

  • Промышленные – профессиональные принтеры , заточенные под определённые задачи производства и работающие в промышленных масштабах. В основном используются на крупных предприятиях. Из-за почти уникальной конструкции каждого из типов таких принтеров для них требуются особые условия использования и профессионализм персонала.

Промышленный 3D-принтер. Зачастую промышленные принтеры проектируются и создаются индивидуально, заточенные под нужды определённого производства, поэтому и размером они могут быть как с легковой автомобиль, так и с целый автобус.

  • Специфические – Принтеры в этой категории можно определить и как промышленные, и как профессиональные, но из-за их особенности нельзя их не выделить в отдельную категорию. К специфическим можно отнести принтеры, «печатающие» дома, органы и т.д., о которых многие слышали, как о каких-то легендарных артефактах. На самом деле процессы и/или нюансы создания каких-либо объектов в таких принтерах слишком сильно отличаются от классических примеров, поэтому в этой статье нецелесообразно уходить так далеко в сторону. Однако, справедливости ради стоит отметить, что с конструкционной стороны те же принтеры-строители отличаются от настольных принтеров лишь тем, что они в сотни раз больше, разбираются и собираются на месте (как подъёмные краны) и «печатают» бетоном вместо пластика.

Строительный принтер

Производитель Creality

Производитель PICASO 3D

Производитель Anycubic

Производитель Raise3D

По принципу работы (технологии печати)

Филаментные принтеры

FDM FFF – Fusing Deposition Modeling, что в переводе означает «технология послойного наплавления пластиком (полимером)».

Фотополимерные принтеры

Polyjet (MJM) – фотополимер наносится микрокаплями через дюзы печатной головки на стол, как при струйной печати, и отверждается на рабочей поверхности под воздействием УФ-излучения.

SLA – лазерная стереолитография, основанная на послойном отверждении жидкого фотополимера под действием лазера.

DLP – Direct Light Processing, аналог SLA. Вместо лазеров DLP-принтеры оснащены УФ-проекторами (LED), которые засвечивают модели весь слой за один раз. В целом качество хуже, чем в SLA, однако скорость печати на порядок выше.

LCD (DUP, Direct UV Printing – прямая УФ засветка) – ещё один аналог SLA. В качестве УФ-диода используется LCD-панель.

Порошковые принтеры

SLS – Selective Laser Sintering (букв. Выборочное Лазерное Спекание). Суть данной технологии в том, что лазер формирует модель, послойно точечно спекая порошковые материалы из пластика.

MJF – Multi Jet Fusion. Отличие от SLS в том, что в MJF на порошок наносится связующее вещество, после чего спекается инфракрасным светом.

SLM – Selective Laser Melting (Выборочное Лазерное Плавление). Металлический порошок послойно расплавляется мощным лазером, формируя 3D-модель.

EBM – Electron Beam Melting. Похоже на SLM, однако здесь вместо лазера используются мощные электронные пучки.

3DP – Three Dimensional Printing. На материал в порошковой форме наносится клей, который связывает гранулы, затем поверх склеенного слоя наносится свежий слой порошка, и так далее. На выходе, как правило, получается материал sandstone (похожий по свойствам на гипс).

Другие

LOM – Laminated Object Manufacturing. Тонкие листы материала вырезаются с помощью ножа или лазера и затем спекаются или склеиваются (ламинируются) в трехмерный объект.

CLIP – Continuous Liquid Interface Production. Новая перспективная технология скоростной печати, предлагающая “наращивание”, а не создание модели по слоям, как во всех предыдущих примерах.

Читая названия технологий можно легко запутаться в них, но не стоит напрягаться. Наибольшее распространение получили принтеры с технологиями печати FDM и SLA, поэтому на их примере мы и рассмотрим, как работает 3D-принтер – этого будет достаточно, чтобы в общих чертах разобраться в теме.

Как устроен 3D-принтер

Теперь рассмотрим конструкцию принтера.

Конструкция FDM

Каркас принтера – без него никуда, на нём держатся все узлы. Может быть открытым либо закрытым.

Электроника – платы, провода для управления принтером. Чаще всего совмещены с панелью управления (3), однако конкретно на примере закреплены отдельно.

Панель управления принтером – плата с дисплеем и кнопками. Составляющая часть электроники принтера.

Стол для печати – на нём и создаётся сама модель. Может быть подогреваемым (для лучшего сцепления модели с поверхностью стола)

Оси, моторчики, зубчатые ремни – с помощью них происходит перемещение печатающего узла. Конструкции передвижения могут быть разными: неподвижный или подвижный стол, поднимающийся узел печати или статичный с опускающимся столом и т.д.

Крепление для катушки с пластиком.

Печатающий элемент – экструдер. С помощью шестерёнок внутри он затягивает пластиковую нить с катушки, а с помощью нагревательного элемента, собственно, расплавляет его, после чего жидкий пластик (филамент) выдавливается из отверстия сопла. В некоторых моделях принтеров возможна печать разными цветами/типами пластика одновременно за счёт конструкции печатающего узла, предусматривающей одновременно несколько экструдеров. Однако чаще всего экструдер в принтере только один, поэтому для изменения цвета просто сменяется пластик на тот, который понадобится в следующий момент.

Конструкция SLA

Если FDM создаёт модель послойно путём выдавливания расплавленного пластика и формирования таким образом объекта, то SLA принтер идёт совсем другим путём. Лазер напрямую или через повёрнутое под определённым углом зеркало послойно «засвечивает» на поверхности стола, погружённого в жидкий фотополимер, слои, создавая очертания слоя на каждой ступени.

Из-за этого качество печати почти идеально.

Каркас принтера. В отличие от FDM, фотополимерные принтеры используют в работе УФ-излучение, поэтому всегда закрыты защитным кожухом (1.2) из затенённого стекла, оргстекла и т.д., препятствующего прохождению УФ-излучения наружу.

Панель управления принтером.

Стол для печати – располагается «вверх ногами». В процессе печати опускается и поднимается из ванночки с фотополимером.

Ось и направляющая для подъёма/опускания печатного столика. Единственный подвижный элемент в принтере, нужен для поднятия стола по слоям. Работу остальных осей выполняет УФ-лазер.

Лазер/проектор/LCD-панель. Этот элемент является источником УФ-излучения, отверждающего фотополимер по слоям согласно образцу печати.

Ванночка для фотополимера – содержимое этой ёмкости и является материалом печати.

Итак, основные элементы обоих принтеров нам понятны, теперь давайте мысленно перейдём к самому созданию модели и опишем каждый этап для понимания сути процесса и разберёмся, как всё работает.

Производитель Anycubic

Производитель Phrozen

Производитель Peopoly

Производитель Phrozen

Процесс создания модели с нуля. Как печатать на 3D-принтере

Создание модели в электронном виде

Для этого этапа в целом есть два варианта действий: можно взять готовую модель из общедоступных источников или создать её самостоятельно.

В первом случае источниками могут служить тематические сайты, такие как Thingiverse, MyMinifactory, CG Trader и др., а также файлы игры, проекты других людей и так далее.

Интерфейс сайта Thingiverse

Конечно, не всё так просто – найти то, что нужно, получится далеко не всегда. Зачастую за качественную модель придётся заплатить, причём немало. Аналогично можно заказать модель на фриланс-бирже или по объявлению, однако в этом случае стоимость станет ещё выше, т.к. заказ будет индивидуальным. А бесплатные варианты зачастую нуждаются в объёмной обработке или вовсе переделке, так что иногда целесообразнее будет создать модель самому.

Самостоятельное создание. Для этого в наше время есть множество различных программ: AutoCAD, Fusion360, Tinkercad, Blender, Autodesk 123D и масса других. Все они различаются по функционалу и целям моделирования, поэтому каждый найдёт то, что подойдёт именно для его целей.

Вот так выглядит Autodesk 123D, так сказать, изнутри.

После создания модели её экспортируют на компьютер в одном из общепринятых форматов: .STL, .OBJ, .FBX, .3DS и других. Различные форматы подразумевают немного разное количество информации об объекте, которую они вмещают, однако в целом различия незначительные и в основном диктуются программами, в которых модели разрабатываются.

Подготовка файла для печати

Для следующего этапа используется специальное ПО – слайсер. Самый распространенный слайсер – Cura, однако есть и другие: Simplify3D, Astroprint, 3DPrinterOS и не только.

Такая программа «разрезает» модель в файле на слои и задаёт координаты передвижения для экструдера принтера на каждом слое. Вот такой путеводитель.

Классический вид программы Cura

Здесь же можно настроить толщину слоя, масштаб, положение, плотность заполнения, скорость печати в различных местах модели, создание специальных подставок для нависающих элементов модели, специальные скрипты (подпрограммы поведения) для принтера и многое-многое другое.

После всех действий готовый файл со всей информацией экспортируется на компьютер в формате .gcode, после чего этот файл можно загрузить в принтер через SD-карту или напрямую от компьютера, с помощью провода(последний способ менее надежный, т.к. 3D-печать – долгий процесс, в течение которого ПК может перейти в режим сна или в нём может произойти сбой, из-за чего печать пойдёт насмарку).

Подготовка принтера

Сейчас пора включать принтер. Отдельные пункты подготовки к печати для разных типов принтеров отличаются, однако в общем на этом этапе происходит проверка элементов конструкции на неисправность, калибровка узлов, прогрев сопла и, возможно, стола, нанесение специального состава на стол для лучшего сцепления с моделью и так далее.

В случае с SLA, процесс подготовки немного отличается. Самой калибровки и возни с узлами значительно меньше просто из-за отсутствия множества из них (например, одна ось перемещения у SLA вместо трёх у FDM). Поэтому по большему счёту всё, что нужно сделать – залить фотополимер в ванночку.

Печать 3D-модели

На панели управления принтера выбираем файл для печати и нажимаем кнопку старта. Собственно, с этого момента и начинается магия воплощения электронного прототипа в физическую модель. В процессе печати могут возникнуть ошибки или сбои, так что время от времени стоит наблюдать за положением дел. Почему не в течение всей печати, спросите вы? Дело в том, что завораживает процесс печати только первые несколько слоёв, а вот дальше вряд ли кто-то захочет тратить часы своего времени (а процессы изготовления деталей покрупнее брелока исчисляются именно в часах), сидя у принтера.

Слева процесс на SLA, справа – на FDM принтере

Постобработка

При совокупности хороших факторов , таких как качественный принтер, хорошая настройка и калибровка, дорогой пластик и т.д. модель может получиться действительно практически идеальной и обработка не будет муторной и тяжёлой. Однако зачастую на поверхности могут остаться «сопли», бугорки, неровности и прочие дефекты печати, это нормально. Ну а в случае печати с поддержками без этого этапа не обойтись, ведь эти самые подставки необходимо удалить.

Поэтому вспоминаем уроки труда и берём в руки канцелярский нож, надфили, наждачную бумагу и всё остальное, что может понадобиться. Но главное – не забывать про ТБ!

Но это всё с FDM-принтером. При SLA-печати модели требуют другой пост-обработки, поэтому обязательные этапы после печати – промывка модели в спирте, и, если нужно, её дозасветка в специальной УФ-камере для окончательного отверждения. Вот такие вот СПА-процедуры.

Готово!

Вот мы и можем пощупать модель, которая совсем недавно была только в нашем воображении. Ну чем не чудо, правда?

Заключение

Ну вот мы и разобрались, какие принтеры бывают, что они есть такое и с чем их едят и поэтапно рассмотрели процесс самой печати на примере двух видов принтеров.

Если после прочтения у вас появилось желание узнать об этом побольше, а может быть даже самому приобрести 3D-принтер и на собственном опыте пройти каждый шаг по воплощению идеи предмета в физическую модель – это прекрасно! Конечно, можно подумать, что всё это так далеко от вас и кажется чем-то невероятным – это неправда. В наше время приобрести 3D-принтер и начать печатать намного проще,

Просмотрите видео на эту тему, почитайте статьи. Для начала можно приобрести бюджетный вариант, для обучения и первых шагов в сфере 3D-печати этого будет достаточно.

Загляните на форумы по 3D-печати. Даже профессионалы пользуются таковыми для решения проблем, нахождения новых способов решения задач и просто общения. Возможно вы поймете, что это то самое хобби, которое вам хотелось приобрести в течение жизни!

Ну и помните: нет преград для движущегося вперёд. Успехов в пути!

3D-принтер: виды, характеристики, технологии и схемы печати

3D-принтер – внешнее устройство компьютера, которое является ничем иным, как станком с числовым программным управлением (ЧПУ) предназначенным для быстрого получения прототипов изделий, спроектированных на ПК, методом послойной печати.

Основные характеристики 3D-принтера

Назначение

3D-принтеры выпускаются под конкретные задачи: архитектура, дизайн, медицина, образование, производство, протезирование, прототипирование.

Технология печати

Производители 3D-принтеров используют различные технологии печати. Чтобы у вас не возникло проблем, при выборе конкретной модели, рассмотрим основные виды 3D-печати. Именно от технологии печати зависят такие важные параметры, как минимальная и максимальная толщина слоя и скорость построения изделия. А также цена, как самого 3D-устройства, так и расходных материалов.

В зависимости от принципа создания заготовок, выделяют следующие виды 3D-печати:

  • SLA — лазерная стереолитография,
  • SLS (EBM, SLM) — селективное лазерное спекание,
  • FDM — метод последовательного наплавления,
  • DLP — технология цифрового проецирования,
  • MJM — многоструйная укладка полимера.
Лазерная стереолитография

Суть SLA-технологии заключается в использовании жидкого фотополимера и специального реагента, который позволяет исходному материалу застывать под воздействием ультрафиолетового лазера.

Фотополимер заливается в ванну и нагревается до рабочей температуры. Затем в смесь погружается подвижная платформа, которая постепенно перемещается вверх. В этот момент ультрафиолетовый лазер производит засветку платформы снизу по заданным координатам, в следствие чего затвердевший полимер вначале прилипает к платформе, а последующие слои к ранее застывшему полимеру. Платформа многократно поднимается и опускается с предварительным перемешиванием фотополимера. Процесс повторяется слоем за слоем, а изделие печатается снизу-вверх.

Большинство 3D-принтеров данного вида печатают тонкими слоями, у них небольшая погрешность.

Селективное лазерное спекание

Метод SLS основан на равномерном распределении специального порошка с последующим его плавлением под воздействием лазера, в соответствии с геометрией сечения каждого слоя изделия. По завершении печати, необходимо удалить порошок, снять изделие со вспомогательных подпорок и выполнить минимальные доработки по доведению детали до кондиции.

SLS 3D-принтеры также, как и SLA-модели, обладают высокой точностью печати и приемлемым качеством изделий.

Метод последовательного наплавления

Технология FDM наиболее распространена благодаря своей простоте. В печатающую головку (экструдер) 3D-принтера, подается полимер в виде нити, который подвергается плавлению при воздействии температуры, после чего он наносится на рабочую поверхность в заданную точку координат через специальное сопло. Готовые изделия необходимо подвергать постобработке, чтобы сгладить структуру слоёв.

3D-принтеры, использующие FDM-технологию, позволяют печатать изделия различных цветов.

Технология цифрового проецирования

DLP метод аналогичен лазерной стереолитографии. Отличие заключает в том, что засветка платформы осуществляется проекциями слоев 3D-модели, в следствие чего смола застывает в нужных областях.

Несмотря на продвинутый подход DLP-технологии, в сравнении с SLA-технологией, есть существенный минус — изделие должно остыть после печати, что может привести к возникновению деформаций.

Многоструйная укладка полимера

Принцип MJM-печати заключается в послойном нанесении расплавленного материала через несколько сопел одновременно. При печати модели необходимо использовать поддерживающие элементы (подпорки).

Технология MJM позволяет печатать высокоточные изделия.

Интерфейс подключения

3D-принтеры оснащаются одним или несколькими интерфейсами подключения:

  • LAN – устройство соединяется с компьютером посредствам сетевого протокола и может входить в состав проводной локальной сети,
  • USB – 3D-принтер подключается к компьютеру напрямую через usb-кабель,
  • Wi-Fi – ЧПУ использует беспроводной протокол передачи данных по локальной сети,
  • SD – устройство имеет картридер, что позволяет осуществлять печать изделий c SD-карт.

Программные требования

Обязательно учитывайте такие параметры 3D-принтеров, как:

  • совместимость с операционными системами,
  • возможность использования сторонних программ,
  • поддерживаемые файловые форматы.

Конструктивные особенности 3D-принтеров

Принцип работы 3D-принтера основан на законах кинематики. Выделяют несколько схем 3D-печати, исходя из перемещений платформы и печатающей головки, которые могут двигаться относительно друг друга в различных плоскостях.

Существует четыре основные схемы печати:

  • дельта,
  • экструдер перемещается по осям Х и Y,
  • экструдер меняет положение в пространстве по осям X и Z,
  • экструдер движется по осям X, Y и Z.

I схема

Платформа находится в неподвижном состоянии, положение по осям x, y, z меняет только экструдер. Особенность модели — наличие высокого каркаса. Печатающая головка размещена на трёх стержнях, каждый из которых закреплен на подвижном блоке, размещённом на опоре, с возможностью вертикального перемещения.

Плюсы: высокая скорость печати, хорошая точность.

Дельта

II схема — экструдер движется по осям Х и Y

Печатающая головка находится над платформой и способна двигаться влево-вправо или вперед-назад, а платформа вверх-вниз.

Экструдер движется по осям Х и Y

III схема — экструдер перемещается по осям X и Z

Экструдер, как в предыдущем типе, способен передвигаться влево или вправо, а также менять своё положение в пространстве по высоте. Платформа, в свою очередь, способна двигаться вперед или назад не меняя высоты.

Экструдер перемещается по осям X и Z

IV схема – экструдер движется по осям X, Y и Z

Последняя схема предполагает использование неподвижной платформы. Как в случае со схемой «Дельта», экструдер способен перемещаться по трём осям [x, y, z], однако в данном случае нет сложного механизма фиксации печатающей головки.

Как выбрать 3D-принтер?

Рынок переполнен дешёвыми моделями 3D-принтеров потребительского уровня с ограниченным функционалом, которые, несомненно, подойдут для печати малогабаритных изделий. Данные 3D-принтеры имеют большую погрешность в точности и низкую скорость печати. Несмотря на это, открывается возможность ознакомиться с технологией 3D-печати и сделать простые детали.

3D-принтеры начального уровня

Установки данного плана годятся для моделирования, способны печатать методом FDM, в редких случаях поддерживают технологии SLA и SLS. В комплектации предоставляется одно сопло, используются недорогие полимерные материалы. У моделей низкая скорость печати, а также отсутствуют дополнительные функции.

  • подходит для знакомства с оборудованием,
  • простая установка,
  • возможность быстрой настройки.
  • открытая камера,
  • поддерживает не все виды пластика.

Профессиональные 3D-принтеры

К особенностям профессиональных 3D-принтеров приписывают огромный функционал, плюс высокую скорость печати. Установки способны работать с широким спектром расходных материалов. При печати используются тонкие слои, поэтому изделия получаются гладкими.

  • возможность печати больших объектов,
  • в комплекте несколько экструдеров,
  • поддержка пластика от различных производителей.
  • дорогая стоимость,
  • сложность проведения ремонта.

Как работает 3D принтер: объяснение на простых примерах

3D-печать распространена повсеместно. Она позволяет создать что угодно — от прототипов всевозможных изделий, до функциональных частей реактивных двигателей самолетов и космических аппаратов, от канцелярских принадлежностей и автозапчастей, до шоколадок и сувениров.

Но, как именно работают 3D-принтеры, как они создают трехмерные объекты любой возможной формы — знают еще не все. Если вы хоть раз задавались этими вопросами, то перед вами — самое простое объяснение 3D-печати.

Общие принципы 3D-печати

Принцип 3D-печати по любой существующей технологии — создание объемных объектов из совокупности плоских слоев.

Цифровая модель изделия разделяется на слои специальной программой — слайсером, а принтер печатает эти слои, один на другом, составляя из них трехмерный объект. Так, из множества слоев, получается объемная деталь.

Общий принцип один, но технологии различаются; самая распространенная и доступная среди них — FDM.

FDM

Моделирование методом послойного наплавления (FDM), также известное как производство способом наплавления нитей (FFF) — самый популярный и массовый тип 3D-печати.

Стандартное FDM-устройство работает как термоклеевой пистолет управляемый роботом, что не удивляет, ведь разработка технологии FDM когда-то начиналась с опытов с термоклеем. Пластиковый пруток проталкивается через горячее сопло, где он плавится, а выходя из него укладывается слоями. Процесс повторяется снова и снова, пока не появится готовый 3D-объект.

Единственное отличие в том, что 3D-принтеры используют не стержни термоклея, а пластиковый филамент намотанный на катушки.

Самые распространенные материалы для FDM (FFF) — пластики ABS и PLA.

Пластиковая нить, она же филамент, выпускается в такой форме для того, чтобы она могла легко плавиться при заданной температуре, но очень быстро застывать — после охлаждения всего на пару градусов. Именно это и позволяет печатать 3D изделия со сложной геометрией с высокой точностью.

Проще говоря, 3D-печать отличается от традиционной 2D-печати только тем, что повторяется снова и снова, создавая слой за слоем, один на поверхности другого. В конце концов, тысячи слоев образуют 3D-объект.

FDM-принтер на примере MakerBot Replicator 2


Стереолитография

Стереолитография использует свет для “выращивания” объектов в емкости с фотополимерной смолой. Как и в прочих технологиях 3D-печати, изделие образуется слой за слоем, здесь — при отверждении жидкого фотополимера светом.

От FDM стереолитография отличается более монолитными принтами, даже с одинаковой заданной толщиной слоя.

На фото: принты FDM и SLA, слой обеих моделей — 0,1 мм.

Дело в разнице в технологиях — фотополимерная засветка дает более аккуратные слои, чем расплавленный филамент выдавливаемый из сопла FDM-принтера.

SLA и DLP — две разновидности стереолитографии. SLA — лазерная стереолитография, DLP — цифровая проекция. Различие между ними в том, что в SLA источником света служит лазер, а в DLP — проектор.

Независимо от технических особенностей, принцип работы устройств SLA и DLP схож. Для запуска печати необходимо опустить специальную платформу построения в емкость с жидкой фотополимерной смолой.

Платформа останавливается на высоте одного слоя от дна емкости.
Происходит засветка источником света принтера.
Жидкий полимер, под воздействием света, становится твердым и прилипает к платформе построения. После этого платформа поднимается на высоту еще одного слоя и процесс повторяется.

SLA-принтер на примере Formlabs Form 2

SLA дает более гладкие поверхности, по сравнению не только с FDM, но и с DLP, о которой рассказываем далее.

Так получается потому, что DLP проецирует слои картинкой из пикселей, а луч лазера в SLA движется непрерывно, что дает ровный, не пикселизованный слой.

DLP в тех же целях использует проектор, а LED DLP — ЖК-дисплей с ультрафиолетовой подсветкой. В этих конструкциях свет проецируется на смолу по всей площади слоя одновременно, что дает преимущество в скорости, когда необходима печать крупных объектов с заполнением в 100% — полная засветка слоя происходит быстрее, чем в SLA.

Но при печати мелких или пустотелых объектов SLA быстрее, так как интенсивность засветки лазерным лучом, а значит и скорость полимеризации, выше.

DLP-принтер на примере SprintRay MoonRay S

SLS

Главное преимущество технологии перед FDM и SLA — SLS-печать не требует создания поддерживающих структур, ведь материалом поддержки служит окружающий модель материал — это позволяет печатать изделия любой формы, с любым количеством внутренних полостей, и заполнять ими весь рабочий объем принтера. SLS-принтеры работают с широким спектром материалов, а их принты прочнее, чем большинство напечатанных FDM или стереолитографией.

Благодаря прочностным характеристикам, напечатанные на SLS-принтерах детали могут использоваться в практических целях, а не только как прототипы и декоративные элементы.

Для создания объекта аппарат направляет лазер на слой мелкофракционного порошка, сплавляя частицы друг с другом для формирования слоя изделия. Затем, устройство рассыпает следующую порцию порошка на поверхность готового слоя и разравнивает его, а лазер расплавляет, создавая следующий слой изделия. Процедура повторяется до тех пор, пока печать не будет завершена.

Есть у SLS-принтеров и минус — их стоимость. Они очень дороги, по сравнению с FDM и SLA/DLP. Это связано с ценой необходимых для такой печати высокоэнергетических лазеров. В принципе, стоимость даже самых дешевых SLS-принтеров совсем недавно начиналась от $200 000.

Тем не менее, некоторые компании в настоящее время работают над тем, чтобы сделать данную технологию более доступной, поэтому есть шанс, что приобрести SLS-принтер в ближайшем будущем смогут позволить себе даже любители. Один из примеров — польская компания Sinterit.

SLS-принтер на примере Sinterit Lisa Pro

Извлеченная из SLS-принтера модель не требует удаления поддержек и может использоваться без постобработки, ее надо лишь очистить от лишнего порошка.

Polyjet

Главное преимущество технологии Polyjet в ее мультиматериальности — многие Polyjet-принтеры способны печатать объект большим количеством различных материалов одновременно, что позволяет создавать изделия состоящие из участков с разными механическими и оптическими свойствами, то есть — разной твердости и цвета. Это фирменная технология компании Stratasys.

Пример: принтер Stratasys и напечатанные на нем кроссовки.

Polyjet 3D-принтеры распыляют крошечные капельки фотополимерной смолы на поверхность и полимеризуют их ультрафиолетовым излучением.


Этот процесс повторяется до тех пор, пока не будет создан объект. В отличие от FDM-принтеров, Polyjet-устройства могут наносить материал из многочисленных сопел одновременно.

Polyjet-принтер на примере Stratasys J750

Заключение

Прочитав эту статью, вы ознакомились с принципами и примерами работы 3D-принтеров функционирующих по самым распространенным технологиям.

Существуют и другие технологии, в основном — связанные с 3D-печатью металлами, но они используются только в промышленности. О них мы поговорим отдельно.

Чтобы выбрать 3D-печатное оборудование и материалы для любых задач обращайтесь в Top 3D Shop — проконсультируем, подберем максимально подходящую технику и расходники, оформим заказ, доставим, установим и научим.

Классификация 3D принтеров (7 технологий 3D печати)

На хабре уже были статьи о технологиях печати, которые используют 3D принтеры, однако в данной статье я постарался подойти к вопросу системно, чтобы в голове у читателя сложилась четкая картина о том, какие принципы заложены в технологии 3D печати, какие материалы используются и в конечном итоге какую технологию лучше использовать для получения определенного результата, будь то деталь из титана, или мастер-модель для последующего тиражирования.
Статья основана на книге Fabricated: The New World of 3D printing

I. Те которые что-то выдавливают или выливают или распыляют

1) FDM (fused deposition modeling) принтеры которые выдавливают какой-то материал слой за слоем через сопло-дозатор, не буду расписывать подробно, мы про них все знаем. Все мэйкерботоподобные принтеры + принтеры Stratasys + различные кулинарные принтеры (используют глазурь, сыр, тесто) + медицинские которые печатают “живыми чернилами” (когда какой-либо набор живых клеток помещается в специальный медицинский гель которые используется далее в биомедицине)

2) Технология Polyjet , была изобретена израильской компанией Objet в 2000 г. в 2012 их купили Stratasys. Суть технологии: фотополимер маленькими дозами выстреливается из тонких сопел, как при струйной печати, и сразу полимеризуется на поверхности изготавливаемого девайса под воздействием УФ излучения. Важная особенность, отличающая PolyJet от стереолитографии, является возможность печати различными материалами.
Преимущества технологии: а) толщина слоя до 16 микрон (клетка крови 10 микрон) б) быстро печатает, так как жидкость можно наносить очень быстро. Недостатки технологии: а) печатает только с использованием фотополимера — узко-специализированный, дорогой пластик, как правило, чувствительный к УФ и достаточно хрупкий.
Применение: промышленное прототипирование и медицина

3) LENS (LASER ENGINEERED NET SHAPING)
Материал в форме порошка выдувается из сопла и попадает на сфокусированный луч лазера. Часть порошка пролетает мимо, а та часть, которая попадает в фокус лазера мгновенно спекается и слой за слоем формирует трехмерную деталь. Именно по такой технологии печатают стальные и титановые объекты.
Поскольку до появления этой технологии печатать можно было только объекты из пластика, к 3D печати особенно серьезно никто не относился, а эта технология, открыла двери для 3D печати в “большую” промышленность. Порошки различных материалов можно смешивать и получать таким образом сплавы, на лету.
Применение: например, титановые лопатки для турбин с внутренними каналами охлаждения. Производитель оборудования: Optomec

4) LOM (laminated object manufacturing)
Тонкие ламинированные листы материала вырезаются с помощью ножа или лазера и затем спекаются или склеиваются в трехмерный объект. Т.е. укладывается тонкий лист материала, который вырезается по контуру объекта, таким образом получается один слой, на него укладывается следующий лист и так далее. После этого все листы прессуются или спекаются.
Таким образом печатают 3D модели из бумаги, пластика или из алюминия. Для печати моделей из алюминия используется тонкая алюминиевая фольга, которая вырезается по контуру слой за слоем и затем спекается с помощью ультразвуковой вибрации.

II. Те которые что-то спекают или склеивают

1) SL (Stereolithography) Стереолитография.
Есть небольшая ванна с жидким полимером. Луч лазера проходит по поверхности, и в этом месте полимер под воздействием УФ полимеризуется. После того как один слой готов платформа с деталью опускается, жидкий полимер заполняет пустоту далее запекается следующий слой и так далее. Иногда происходит наоборот: платформа с деталью поднимается вверх, лазер соответственно расположен снизу…
После печати таким методом, требуется постобработка объекта — удаление лишнего материала и поддержки, иногда поверхность шлифуют. В зависимости от необходимых свойств конечного объекта модель запекают в т.н. ультрафиолетовых духовках.
Фотополимер зачастую бывает токсичным поэтому при работе с ним нужно пользоваться средствами защиты и респираторами. Содержать и обслуживать такой принтер дома — сложно и дорого
Преимущества: быстро и точно, точность до 10 микрон. Для спекания фотополимера достаточно лазера от Blu-ray проигрывателя, благодаря чему на рынке появляются дешевые при этом точные принтеры работающие по такой технологии (e.g. Form1).

2) LS (laser sintering)
Лазерное спекание. Похоже на SL, только вместо жидкого фотополимера используется порошок, который спекается лазером.
Преимущества: а) менее вероятно, что деталь сломается в процессе печати, так как сам порошок выступает надежной поддержкой б) материалы в порошковой форме довольно легко найти в продаже в том числе это могут быть: бронза, сталь, нейлон, титан
Недостатки: а) поверхность получается пористая б) некоторые порошки взрывоопасны, поэтому должны храниться в камерах, заполненных азотом в) спекание происходит при высоких температурах, поэтому готовые детали долго остывают, в зависимости от размера и толщины слоев, некоторые предметы могут остывать до одного дня.

3) 3DP (three dimensional printing)
Технология изобретена в 1980 году в MIT студентом Paul Williams, технология была продана в несколько коммерческих организаций, одна из которых — zCorp, в настоящее время поглощена 3D Systems.
На материал в порошковой форме наносится клей, который связывает гранулы, затем поверх склеенного слоя наносится свежий слой порошка, и так далее. На выходе, как правило, получается материал sandstone (похожий по свойствам на гипс)
Преимущества: а) так как используется клей, в него можно добавить краску и таким образом печатать цветные объекты б) технология относительна дешевая и энергоэффективная в) можно использовать в условиях дома или офиса в) можно печатать использовать порошок стекла, костный порошок, переработанную резину, бронзу и даже древесные опилки. Используя похожу технологию можно печатать съедобные объекты например из сахара или шоколадного порошка. Порошок склеивается специальным пищевым клеем, в клей может добавляться краситель и ароматизатор. Как пример, новые 3D принтеры от компании 3D systems, которые были продемонстрированы на CES 2014 — ChefJet и ChefJet Pro
Недостатки: а) на выходе получается достаточно грубая поверхность, с невысоким разрешение

100 микрон б) материал нужно подвергать постобработке (запекать), чтобы придать ему необходимые свойства.

Надеюсь материал будет для вас полезен.
Дополнения принимаются.

Как работает 3D-принтер

И что можно на нём напечатать.

За последние пару лет появилось много новостей о том, что кто-то что-то распечатал на 3D-принтере:

Давайте разберёмся, как работает эта технология, какие у неё ограничения и за ней ли будущее.

Для чего нужен 3D-принтер

3D-принтеры печатают объёмные вещи из пластика или других материалов. Их можно использовать в быту или производстве. Например, вот что можно напечатать на 3D-принтере:

Корпус для батареек. Светодиодную лампу на шарнирах. Лампу в стиле Minecraft. Модель старинного замка.

Как это работает

Обычно для печати 3D-принтер использует специальный пластик. Он бывает в виде порошка, жидкой смолы или пластиковой проволоки в катушках. Именно из этого материала и будет состоять напечатанная деталь.

Дальше, если говорить грубо, процесс выглядит так:

  • этот пластик либо наносят с помощью подвижного сопла;
  • либо «запекают» с помощью лазера;
  • либо из массива готового материала вырезается лишнее с помощью подвижного резака (но это уже больше похоже на токарное дело и к 3D-печати часто не относят).

Материал принимает нужную вам форму слой за слоем. Когда все слои пройдены, получается деталь.

Ускоренная съемка 3D-печати с помощью подвижного сопла:

Из-за того что принтеру нужно постоянно нагревать пластик, 3D-принтеры печатают не очень быстро: на деталь размером с телефон может уйти 15–20 минут. Ещё скорость зависит от толщины слоя: чем толще слой, тем быстрее печать. Но при большой толщине слоя деталь может получиться неаккуратной: будут видны слои:

Чем тоньше слой, тем более ровной получается поверхность при печати.

Технологии печати

3D-печать очень нужна в промышленности и промдизайне, поэтому существует целый зоопарк технологий печати, у каждой свои преимущества и недостатки.

Стереолитография. Вместо пластика здесь используется специальная смола, которая застывает на свету. Деталь тоже формируется слоями, но сами слои почти незаметны — смола заполняет рельеф и деталь кажется единым целым даже с очень близкого расстояния.

Синтез полимеров (SLS). При такой печати используется порошок, который потом запекается лазерным лучом. Так как лазерный луч можно сфокусировать в любом месте с нужной точностью, то таким способом печати можно получить очень сложные модели с высокой детализацией:

Polyjet. Особенность этой технологии в том, что в ней можно печатать объекты одновременно из разных материалов. Это позволяет создавать практически любые вещи самой сложной формы, которые сразу обладают нужными свойствами. На таком принтере можно напечатать даже кроссовки, которые можно носить:

Что можно напечатать

На 3D-принтере можно напечатать всё что угодно, если у вас есть подходящий материал для печати, готовая модель и достаточно большой принтер.

Прототипы. Часто перед началом производства компании нужно понять, насколько удобной получится вещь в использовании. Чтобы не запускать линию ради одного изделия, его печатают на 3D-принтере и смотрят, что нужно изменить или доработать. На таких прототипах можно заметить, например, что кнопки получились слишком маленькими и их будет неудобно нажимать или что кнопки оказались очень далеко от пальцев и до них нужно будет специально тянуться.

Запчасти и детали. Иногда найти запчасть от какого-то инструмента сложно или почти невозможно: производитель их не выпускает или модель давно снята с производства. В этом случае можно найти в интернете трёхмерную модель нужной детали или нарисовать её самому в редакторе, чтобы потом отправить это на печать.

Медицина. Трёхмерная печать активно используется в медицине для создания новых суставов, тканей и лечения пациентов. Отличие от традиционной печати в том, что вместо пластика там печатают специальными «живыми» растворами, которые взаимодействуют друг с другом и ведут себя как настоящие органы и ткани. Благодаря такой технологии сейчас легко напечатать сустав, который хирург может поставить человеку вместо повреждённого.

Хобби и моделирование. На 3D-принтере легко печатать разные миниатюры, коллекционные фигурки и модели.

Производство других роботов. 3D-принтеры пока не умеют производить сервоприводы и микропроцессоры, но уже умеют печатать корпуса и каркасы роботов.

Дома и здания. Берём здоровенные рельсы с моторами и контроллерами. Устанавливаем подвижное сопло, на которое можно подавать строительную смесь (бетон или полимеры). Можно печатать стены зданий. В отличие от традиционных технологий строительства из кирпича, панелей и блоков, форма стен и здания в целом может быть любой. Фундамент, перекрытия и крыша пока что не печатаются, но это пока.

Представьте: отправляем на Марс полсотни 3D-принтеров на подвижной основе. За год каждый из них печатает ещё по 100 принтеров. Далее все эти 5 000 принтеров разъезжаются по Марсу и начинают строить первую колонию. Пока они строят, мы заказываем в Икее мебель, оформляем доставку, и как раз к моменту доставки наши роботы всё допечатают. Яблони на Марсе вряд ли зацветут, а вот пятиэтажки — могут.

Критика и проблемы

❌ Медленно и без гарантий: печать довольно медленная, недостаточно точная. Огромная проблема в любительских принтерах — брак. Например, деталь может отклеиться от подложки прямо во время печати, и произойдёт ад. Или моторы раскалибруются, и сопло начнёт промазывать мимо нужных мест.

❌ Низкая эффективность: чтобы напечатать деталь 10 × 10 см, нужен принтер размером как минимум 50 × 50 см, который будет стоить несколько сотен долларов.

❌ Не самые прочные материалы: 3D-печать пока что ограничена пластиками и смолами. Есть отдельные технологии печати на базе металлического порошка, но если вам нужна стальная деталь — вам нужен не 3D-принтер, а нормальный токарь и станок. Но на станке можно сделать не всякую деталь.

❌ Не всегда понятно зачем. В промышленности 3D-принтеры используют для прототипирования, но в массовом производстве эти технологии не используются. Для домашнего применения тоже неясно: на 3D-принтерах печатают маленькие пластиковые штучки для любительских проектов… и всё. Очень мало случаев, когда обычный человек мог бы захотеть напечатать у себя дома что-то применимое в хозяйстве.

Что дальше

Дальше технология победит все проблемы младенчества и будет печатать вам еду, мебель и внутренние органы. Необязательно при нашей жизни, но наши дети и внуки наверняка застанут.

Ссылка на основную публикацию